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Abstract— Most surface texture displays provide either vi-
brotactile or variable-friction stimuli to users through finger
pads, and they control the changes in the contact force either
along the normal or tangential direction. This study aimed
to answer a fundamental question: that is, which of the two
force components contains the most textural information. We
measured the contact force when a fingertip slid over 21 types
of materials. The force was decomposed into tangential and
normal components to compute individual power spectra. Two
classification machines, Fisher’s discriminant analysis and a
support vector machine, were used to categorize the materials
based on the power spectra. They confirmed that the tan-
gential component of the contact force was more helpful in
distinguishing the 21 materials, with an average success rate of
29%. In contrast, this proportion was as low as 21% when
the normal force was used to train and test the machines.
Furthermore, this proportion did not improve substantially,
even when the two components were used together. Although
these classification machines employ principles different from
those of humans, these results suggest that humans may rely
more on the tangential component of the contact force than on
the normal component to judge textures. These results motivate
us to compare the two force components in terms of different
aspects in the future.

I. INTRODUCTION

Touch panels are the most representative human–computer
interface, and surface texture displays, which provide tactile
stimuli to their users, enhance user experience [1]. Most
existing display techniques employ vibrotactile stimuli [2]–
[4], variable-friction stimuli [5]–[8], or conjunct stimuli [9]–
[11]. Vibrotactile displays actuate a touch panel or the entire
chassis to deform the finger pad in contact. The vibration
direction is limited to the normal or horizontal directions.
Variable-friction displays are further categorized into electro-
static [5], [6] and ultrasound vibration types [7], [12]. Both
approaches dynamically control the surface friction of the
touch panels; hence, the horizontal contact force is primarily
controlled. Thus, surface texture displays typically impart a
change in the contact force to the finger pad along the normal
or tangential direction.

Here, the following question is raised: which of the
tangential and normal components of the contact force are
more effective in presenting textures. To date, some studies
have addressed this question. Biggs and Srinivasan [13]
compared these two directions from the viewpoint of the
difference in the stiffness of the finger pad between the
longitudinal and perpendicular directions and the properties
of the actuators delivering skin stimuli. However, to the best
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Fig. 1. Scheme of the study to compare normal and tangential contact
forces to classify textures

of our knowledge, no previous studies have answered the
question regarding the perceptual quality of textures, whereas
several studies have shown that tactile stimuli in either
direction can deliver textural information (e.g., [2], [3], [14]–
[17]). For example, Wiertlewski et al. [2] demonstrated that
the tangential components include sufficient information to
discriminate between several different surface features. When
a stylus is used to explore textured surfaces, vibrotactile
stimuli along the longitudinal direction of the stylus can
effectively present various textures [16]. However, these stud-
ies did not directly answer our question because they did not
directly compare normal and tangential force components.
By contrast, Ito et al. [18] and Otake et al. [9] compared
vibrotactile stimuli normal to the fingertip and electrostatic
friction stimuli to present virtual grating scales on touch
panels. Although they concluded that the best realism was
achieved when the two types of stimuli were combined, the
vibrotactile condition was more suitable than the electrostatic
condition when only one condition was used. However,
grating scales are only a small part of the texture variety
sought by numerous researchers.

The objective of this study was to determine whether
tangential or normal forces are more potent in presenting
textures from one aspect. As shown in Fig. 1, the nor-
mal and tangential contact forces caused by sliding the
fingertips on various textures were measured. The time-
series information was then converted into frequency spectra.
Machine-learning algorithms were used to estimate the type
of material that produces these spectra. Subsequently, the
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Fig. 2. Instruments to measure the contact force and finger motion. (a)
Schematic. (b) Photo. Adapted from [20].

classification performances of the two directional forces were
compared. Although earlier studies have shown that the
frequency spectra of the contact forces contain rich textural
information [19], [20], no study has compared the forces
along the two directions. Determining which directional
component retains more textural information will deepen our
understanding of the tactile recognition of textures and help
in designing surface texture displays.

II. METHODS

A. Apparatus

We used an instrument [20] shown in Fig. 2 to measure
the finger position and the tangential and normal components
of the finger contact force when a finger slid over the
materials. The main components of the force measurement
instrument were a crystal-type loadcell for the tangential
component (9217A, Kistler, Switzerland) and two loadcells
for the normal component (9313AA2, Kistler). The signals
from the loadcells were conditioned using charge amplifiers
(5073A and 5015, Kistler, Switzerland) and were recorded
at 2 kHz using a data acquisition box (NI USB-6211,
National Instruments Corp., TX). The finger position was
measured using two rotary encoders with a string-winding
system (MLS-12, Microtech Laboratory Inc., Japan; nominal
resolution: 0.04 mm). The winding system retains the tension
of the string using a constant-force spring system embedded
in the product. The two encoders were aligned on the right
and left sides of the instrument, and their spring forces
canceled each other. The string was fixed to the finger at
the distal interphalangeal joint.

B. Participants

The participants were seven university students (two
women) in their 20s who provided informed consent prior to
the experiment. The participants were unaware of the study
objectives.

C. Specimens: Twenty-one materials

Twenty-one types of materials shown in Fig. 3 were
used in the study. They included four wooden (medium-
density fiber) grating scales cut using a laser cutter, with the
wavelength λ of 0.75 mm or 1.0 mm, and the width of the
groove of 0.2 mm or 0.4 mm. Other materials included cloth,
felt, paper, fake leather, fake woven straw, wood, artificial
grass, aluminum sheets, and artificial skin (Bioskin; Beaulax
Co., Ltd., Japan). All the materials were cut into 11 cm ×
4 cm pieces.

D. Procedures

The individual participants wiped their index fingers with
a paper towel. They then slid their index finger on each
material fixed on the instrument described in Section II-A.
Only the finger pad was in contact with the material. The
participants attempted to maintain a sliding speed ranging
from 75 to 125 mm/s with feedback from an experimenter.
The measurement lasted 20 s, such that sufficient contact
force data at the designated sliding speed were available
for the analysis described in Section II-E. No instructions
were provided to the participants regarding contact force. The
participants were not blinded and could view the material
during the measurement process.

E. Data analysis

We used continuous 300-ms periods of force data, during
which the finger speed was in the range of 75–125 mm/s.
Five such 300-ms intervals were extracted for each combi-
nation of individual participants and materials. Hence, 105
(five intervals × 21 materials) sample intervals were used for
the individuals. For each interval, the power spectra of the
tangential (ft) and normal (fn) components were computed
using the fast Fourier transform. The first 100 frequency
components, which correspond to 3.33–333 Hz, were used
for the latter analysis. We did not use the DC component
because it contains information on the individual magnitude
of the contact force rather than that specific to the material
surfaces. The mean power was calculated for every two
frequency components. For example, the power values for
3.33 and 6.66 Hz were averaged. Subsequently, the values
of the 100 frequency components were reduced to 50 values.
Hence, each sample contained these 50 power values and was
used for the machine-learning approaches.

As mentioned in Section I, the objective of this study was
to compare the tangential and normal components of the
contact force. Nonetheless, it is meaningful to set the other
conditions as references. Two additional conditions involving
both components were prepared. In one condition, we com-
puted the power spectra of the coefficient of friction. We
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Fig. 3. Twenty-one materials used in the study

divided the tangential component into a normal component
at each moment and calculated the time series of µ-values:

µ(t) =
ft(t)

fn(t)
. (1)

The power spectrum of the time series of µ(t) values was
computed for each sampling interval of 300 ms. Another
condition is the combination of ft and fn. As previously
mentioned, there are 50 power values for each ft and fn.
Twenty-five power values were extracted from each of ft
and fn, and then, they were combined into a new sample
with 50 power values. For this process, every two frequency
components of the spectra of ft and fn were used.

Hence, we compare four conditions: ft, fv , µ, and the
conjunct (ft and fv). For each condition, each sample
contained 50 machine-learning variables or dimensions.

Fisher’s discriminant analysis, also known as linear dis-
criminant analysis, and a support vector machine were used
to classify the samples into 21 categories. The computational
conditions for each method are as follows.

Fisher’s discriminant analysis is a supervised version of
principal component analysis. The bases of the principal
component space are determined such that the ratio of
the variance between classes (materials) and that within
individual classes is maximized along the individual bases.
Consequently, each basis is sensitive to the difference be-
tween classes but less sensitive to the differences among the
samples in the same class. The model was tested using cross-
validation. The principal component space was established
using 104 of the 105 samples for each participant. The
remaining samples were tested in established spaces. The
sample was categorized as one of the 21 materials using
the k-nearest neighbor method, with k = 7. The seven
nearest samples to the tested sample were selected in the
principal component space, and the category of the sample

was determined through voting by these seven samples. This
process was repeated for all 105 samples. The hyperparame-
ters, that is, the number of principal components and k, were
determined to be two and seven, respectively, such that the
average classification performance among all the participants
was maximized. The classification model was trained and
tested for each participant and the four conditions, among
which the available force component cues were different.

For the support vector machine, we used the Classifi-
cationECOC model in MATLAB (2023b, MathWorks Inc.,
MA). This model addresses multiclass categorization prob-
lems. In our problem setting, the support vector machine
tested the model in a 10-fold cross-validation manner. Similar
to Fisher’s discriminant analysis, for individual participants,
each of the four types of force cues, namely ft, fn, µ, and
(ft and fn), was examined to classify the materials.

III. RESULTS

Tables I and II list the correct classification proportions
for Fisher’s discrimination analysis and the support vector
machine, respectively. They show the proportions of the
different force cues for each individual. The mean values for
the seven participants are shown. The number of materials
was 21, and the chance was 4.8% (1/21 ∼ 0.048).

The results of the two machine-learning algorithms largely
agreed with each other. The tangential force cues led to
higher correct classification proportions for the two algo-
rithms than the normal force cues. For Fisher’s discrimina-
tion analysis, the proportions of the tangential force cues
ft were not significantly different from those of the normal
force cues fn (signed-rank statistics T = 21, p = 0.30,
signed-rank test without p-value adjustment). For the support
vector machine, the proportions for ft were significantly
greater than those for fn (signed-rank statistics T = 28,
p = 0.016, signed-rank test without p-value adjustment).

15



TABLE I
FISHER’S DISCRIMINANT ANALYSIS: CORRECT CLASSIFICATION

PROPORTIONS (%) OF MATERIALS FOR DIFFERENT FORCE CUES

Participant Tangential Normal Friction coeff. Tan. & norm.
(ft) (fn) (µ) (fh and fn)

1 25.71 9.52 11.43 15.24
2 21.90 29.52 11.43 26.67
3 25.71 10.48 13.33 16.19
4 23.81 10.48 13.33 19.05
5 11.43 9.52 18.10 20.95
6 5.71 10.48 10.48 16.19
7 15.24 10.48 7.62 20.00

Mean 18.50 12.93 12.25 19.18

TABLE II
SUPPORT VECTOR MACHINE: CORRECT CLASSIFICATION PROPORTIONS

(%) OF MATERIALS FOR DIFFERENT FORCE CUES

Participant Tangential Normal Friction coeff. Tan. & norm.
(ft) (fn) (µ) (fh and fv)

1 24.76 15.24 21.90 21.90
2 36.19 32.38 30.48 46.67
3 32.38 22.86 26.67 39.05
4 26.67 12.38 22.86 21.90
5 35.24 28.57 22.86 38.10
6 15.24 13.33 16.19 20.00
7 34.29 20.95 27.62 31.43

Mean 29.25 20.82 24.08 31.29

These results suggest that tangential force cues are more
effective for distinguishing between different materials. Fur-
thermore, the proportions of the coefficient of friction µ were
marginally smaller than those of ft (signed-rank statistics:
T = 27, p = 0.0312 for the support vector machine, with
no p-value adjustment).

The conjunctive (ft + fn) and tangential force (ft) cues
exhibited better classification performance than the friction
(µ) and normal force (fn) cues. This trend was more clearly
observed for the support vector machine. For Fisher’s dis-
criminant analysis, this trend was also observed; however, the
correct classification proportions were smaller than those of
the support vector machine by approximately 10%. Hence,
the differences in the proportions of the different cues are
obscure.

Fig. 4 shows the distribution of the samples in the first–
second principal component plane for one participant. This
shows the loci of the 105 samples (five replications × 21
samples) computed by using Fisher’s discriminant analysis
with tangential force components ft. In this figure, all 105
samples were used to compute the model. Five samples
collected from the same material, i.e, five same symbols,
are closely placed; however, they are not completely distin-
guished from the samples of different materials. Fig. 5 shows
the loadings of the first and second principal components
computed for the same participant. These values correspond
to the weighting coefficients of the tangential-force frequency
components.

Table III shows the confusion matrix of the materials
when the support vector machine, which exhibited better
performance than Fisher’s discriminant analysis, was used

Fig. 4. Loci of materials on the principal component plane for a certain
participant. Each material has five samples because it was explored five
times.
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Fig. 5. Example of principal loadings of the first and second principal
components. Computed from the tangential forces of 105 samples for one
participant, which are the same as the data in Fig. 4.

to categorize the materials with the spectra of the tangential
forces as cues. It lists the number and type of materials into
which the samples of each material were categorized.

IV. DISCUSSION

One of the reasons we adopted Fisher’s discriminant
analysis was that it allowed us to interpret the principal
components based on their loadings. We expected the prin-
cipal component space to be linked to the human perceptual
dimensions, as in [21]. However, as in Fig. 5, which shows
the loadings of the principal components for the tangential
force, the loadings largely fluctuate above and below the
zero levels. For example, the loading of the second principal
component is approximately −0.5 at 216.7 Hz. This value
was approximately 0.5 at 218.3 Hz. These two components
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TABLE III
CONFUSION MATRIX OF MATERIAL CLASSIFICATION FOR ALL THE PARTICIPANTS. SUPPORT VECTOR MACHINE AND TANGENTIAL COMPONENTS OF

THE CONTACT FORCES WERE USED. THE SUM OF NUMBERS IN EACH ROW IS 35 (5 SAMPLES × 7 PARTICIPANTS). THE DIAGONAL ELEMENTS ARE THE

NUMBERS OF CORRECT CLASSIFICATION. THE SYMBOLS OF THE MATERIALS, SUCH AS GS1, MATCH THOSE IN FIG. 3.

Estimated material
GS1 GS2 GS3 GS4 PF Cl TF CC Fe FL SF De TI Wo Pa HP CP WS AG Al AS

A
ct

ua
l

m
at

er
ia

l

GS1 6 5 3 1 1 2 0 3 1 2 0 4 0 1 1 3 1 1 0 0 0
GS2 11 10 2 1 0 0 0 1 0 0 0 1 0 0 1 1 2 1 0 2 2
GS3 4 2 11 2 0 3 0 4 1 0 0 1 0 2 0 2 1 0 1 1 0
GS4 2 2 9 12 0 2 1 2 1 0 1 2 0 1 0 0 0 0 0 0 0
PF 1 0 0 0 12 0 0 2 2 3 0 0 1 3 5 0 0 2 0 3 1
Cl 1 1 1 0 0 13 6 1 4 0 0 3 0 5 0 0 0 0 0 0 0
TF 0 1 1 0 0 4 5 4 3 1 0 2 0 4 1 2 0 2 0 2 3
CC 3 1 1 0 1 3 3 10 4 0 0 0 0 1 0 1 0 2 1 1 3
Fe 0 0 0 0 0 0 2 4 11 0 0 1 0 7 1 1 0 2 0 2 4
FL 1 0 0 0 2 0 2 1 3 7 1 0 0 1 8 1 0 0 0 1 7
SF 1 2 0 0 0 0 0 0 0 0 11 4 1 0 0 0 0 2 14 0 0
De 1 1 1 0 0 2 2 0 1 0 2 9 1 4 1 5 0 1 3 0 1
TI 1 0 0 0 1 0 3 2 2 4 1 2 9 2 1 1 0 4 0 2 0
Wo 0 0 0 0 2 3 5 3 2 1 0 1 0 15 0 0 0 0 0 1 2
Pa 1 0 0 0 6 0 0 0 1 5 0 0 0 2 14 0 0 0 0 6 0
HP 0 0 0 0 0 1 3 1 3 0 2 2 1 3 0 12 1 0 6 0 0
CP 1 0 0 0 0 0 0 0 0 0 4 4 3 0 0 6 12 1 4 0 0
WS 1 0 0 0 2 0 3 1 2 1 3 1 3 1 0 0 0 11 3 2 1
AG 0 0 0 0 0 1 0 0 1 0 2 7 0 2 0 4 1 3 11 3 0
Al 0 0 0 0 2 0 2 0 3 3 0 0 2 0 7 1 0 1 3 7 4
AS 0 0 0 0 1 0 1 4 1 5 0 2 0 4 1 1 0 1 0 7 7

play different roles in distinguishing materials, although they
are separated merely by 1.6 Hz. Such extremely fluctuating
loadings may not pertain to the frequency characteristics of
the human tactile system, whose sensitivity draws moderate
curves along the frequency axis [22]. The principal com-
ponents of Fisher’s discriminant analysis were optimized to
categorize the materials, and it is unlikely that the princi-
pal components suggest the perceptual aspects of material
judgment. To connect machine-learning algorithms and hu-
man tactile systems, it may be better to employ supervised
methods based on the results of perceptual experiments [23]–
[25]. In contrast to Fisher’s discriminant analysis, the support
vector machine is less explainable, and we may not be able
to discuss the connections between a machine’s criteria of
material judgment and human tactile perception.

Nonetheless, the classification results of machine-learning
algorithms reflect human perception to some extent. Table III
shows that certain materials are frequently confused with
each other. In particular, two grating scales (GS1 and GS2)
were misclassified. Furthermore, artificial grass (AG) and
soft felt (SF) were confused with each other. A closeup of
the four materials is shown in Fig. 6. These materials exhibit
subjectively similar tactile textures if their surfaces are
explored. Hence, machine-learning algorithms and human
tactile systems share some features, which partly endorse
the suggestion of the study; that is, the tangential component
includes more helpful information for judging textures than
the normal component.

V. CONCLUSION

To determine whether the tangential or normal components
of the contact force produced by a sliding finger include
more information for discriminating textures, we compared
the performances of their power spectra to categorize 21 ma-
terials. For classification, two machine-learning approaches,

Grating scale

(GS1)

Grating scale

(GS2)

Soft felt

(SF)

Artificial grass

(AG)

Fig. 6. Closeups of four materials. The support vector machine frequently
confused GS1 and GS2, and SF and AG. These pairs of materials exhibit
similar tactile textures.

namely, Fisher’s discriminant analysis and a support vector
machine, were employed. The categorization performances
of the two force components were largely consistent between
the two learning methods. The tangential components exhib-
ited a significantly better performance, indicating that they
contained richer information than the normal components.
This study did not involve perceptual experiments that could
be referred to by classification algorithms. Further studies on
human psychophysical performance are necessary to support
this conclusion.
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