Neuromagnetic Source Reconstruction and Inverse Modeling

Application of adaptive spatial filter techniques

Kensuke Sekihara

Tokyo Metropolitan Institute of Technology
This talk:

• formulates the neuromagnetic source reconstruction problem using spatial filter.

• introduces adaptive spatial filter (adaptive beamformer) techniques.

• clarifies its implicit assumptions on the source configuration.

• discuss a problem of SNR degradation caused by the errors in the forward modeling.
Magnetoencephalography
(Neuromagnetic measurements)

• can provide a high temporal resolution.

• cannot provide (adequate) information on the source spatial configuration.

Efficient numerical algorithms for estimating source configuration are need to be developed.
(Source localization problem)
Source localization problem

• Dipole modeling approach

• Image reconstruction approach
 • Tomographic reconstruction methods
 • Spatial filter
Tomographic reconstruction

• Assume pixel grids in the region of interest.

• Assume a source at each grid.

• Estimate the moment of these sources by least-squares fitting to the measured data.
Spatial filter technique

• Form spatial filter weight $w(r)$ that focuses the sensitivity of the sensor array at a small area at r.

• Scan this focused area over the region of interest to obtain source reconstruction.
Right posterior tibial nerve stimulation measured by a 37-channel sensor array

Hashimoto et al., NeuroReport 2001
Right median nerve stimulation
measured by a 160-channel whole-head sensor array

Hashimoto et al., J. Clinical Neurophysiology submitted for publication
Definitions

- data vector: \(b(t) = \begin{bmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_M(t) \end{bmatrix} \)

- data covariance matrix: \(R = \langle b(t)b^\top(t) \rangle \)

- source magnitude: \(s(r,t) \)

- source orientation: \(\eta(r,t) = [\eta_x(r,t), \eta_y(r,t), \eta_z(r,t)]^\top \)
Lead field vector for the source orientation $\eta(r)$

$$L(r) = \begin{bmatrix}
l_1^x(r) & l_1^y(r) & l_1^z(r) \\
l_2^x(r) & l_2^y(r) & l_2^z(r) \\
\vdots & \vdots & \vdots \\
l_M^x(r) & l_M^y(r) & l_M^z(r)
\end{bmatrix}, \quad l(r) = L(r) \begin{bmatrix}
\eta_x(r) \\
\eta_y(r) \\
\eta_z(r)
\end{bmatrix}$$

$||s_x|| = ||s_y|| = ||s_z|| = 1$
Basic relationship

\[b_j(t) = \int l_j(r)s(r,t)\,dr \]

or

\[b(t) = \int L(r)s(r,t)\,dr \]

Problem of source localization:

Estimate \(s(r,t) \) from the measurement \(b(t) \)
Spatial filter

\[
\hat{s}(r, t) = w^T(r)b(t) = [w_1(r), \ldots, w_M(r)] \begin{bmatrix} b_1(t) \\ \vdots \\ b_M(t) \end{bmatrix} = \sum_{m=1}^{M} w_m(r)b_m(t)
\]

\[\uparrow \quad \uparrow\]

estimate of \(s(r, t)\) \quad \text{weight vector}

Non-adaptive weight: \(w(r)\) is data independent

Adaptive weight: \(w(r)\) is data dependent
Adaptive spatial filter

Minimum-variance beamformer

$$\hat{s}(r, t) = w^T (r)b(t) = [w_1(r), \ldots, w_M(r)] \begin{bmatrix} b_1(t) \\ \vdots \\ b_M(t) \end{bmatrix} = \sum_{m=1}^{M} w_m(r)b_m(t)$$

$$\min_w w^T R w \text{ subject to } w^T l(r) = 1 \quad \Rightarrow \quad w^T (r) = \frac{l^T (r)R^{-1}}{l^T (r)R^{-1}l(r)}$$

$$\langle \hat{s}(r, t)^2 \rangle = \frac{1}{l^T (r)R^{-1}l(r)}$$
Assumption that source activities are uncorrelated

With constraint: \(w^T (r_p) l(r_p) = 1 \)

\[
\begin{align*}
w^T (r_p) R w(r_p) &= \langle s(r_p, t)^2 \rangle + \sum_{q \neq p} \langle s(r_q, t)^2 \rangle \| w^T (r_p) l(r_q) \|
\end{align*}
\]

\[\uparrow\]

\[\langle s(r_p, t)s(r_q, t) \rangle = 0 \quad \text{when} \quad p \neq q\]

\[
\begin{align*}
\min_w \left[w^T (r_p) R w(r_p) \right] &\Rightarrow w^T (r_p) l(r_q) = 0, \ q \neq p
\end{align*}
\]

Therefore, this minimization gives the weight satisfying

\[
\begin{align*}
w^T (r_p) l(r_q) &= 1 \quad \text{for} \ p = q \\
&= 0 \quad \text{for} \ p \neq q
\end{align*}
\]
Spatial filter technique

- Form spatial filter weight $w(r)$ that focuses the sensitivity of the sensor array at a small area at r.

Focused region
Adaptive beamformer sensitivity pattern: plot of $w(r_0)l(r)$

The density of the colors is proportional to $w(r_0)l(r)$. The weight sets null-sensitivity at regions where sources exist.
Consider a easiest case where we know locations and orientations of all Q sources

weight $\mathbf{w}(r_1)$ (containing M unknowns) can be obtained by solving a set of Q linear equations:

$$\mathbf{w}^T (r_1) \mathbf{l}(r_1) = \mathbf{w}_1 (r_1) l_1 (r_1) + \ldots + \mathbf{w}_M (r_1) l_M (r_1) = 1$$

$$\mathbf{w}^T (r_1) \mathbf{l}(r_2) = \mathbf{w}_1 (r_1) l_1 (r_2) + \ldots + \mathbf{w}_M (r_1) l_M (r_2) = 0$$

$$\vdots$$

$$\mathbf{w}^T (r_1) \mathbf{l}(r_Q) = \mathbf{w}_1 (r_1) l_1 (r_Q) + \ldots + \mathbf{w}_M (r_1) l_M (r_Q) = 0$$

when $Q > M$, there is no solution for $\mathbf{w}^T (r_1)$
Low-rank signal

Number of sensors $M >$ Number of sources Q

$$R = U \begin{bmatrix} \lambda_1 & 0 & \cdots & \cdot & 0 \\ 0 & \ddots & 0 & \ddots & \cdot \\ \vdots & \ddots & \lambda_Q & \ddots & \cdot \\ \cdot & 0 & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \ddots & \lambda_M \end{bmatrix} U^\top = U \begin{bmatrix} \Lambda_S & 0 \\ 0 & \Lambda_N \end{bmatrix} U^\top$$

$$U = [e_1, \ldots, e_Q \mid e_{Q+1}, \ldots, e_M] = [E_S \mid E_N]$$

$$\Gamma_{S}^{-1} = E_S \Lambda_S^{-1} E_S^\top \quad \text{and} \quad \Gamma_{N}^{-1} = E_N \Lambda_N^{-1} E_N^\top \quad \Rightarrow \quad R^{-1} = \Gamma_{S}^{-1} + \Gamma_{N}^{-1}$$
Orthogonality principle

\[E_N^T l(r_q) = \Gamma_n^{-1} l(r_q) = 0 \text{ at any source location } r_q \]

Minimum-variance spatial filter output:

\[
\left\langle \hat{S}(r)^2 \right
angle = \frac{1}{l^T(r)R^{-1}l(r)} = \frac{1}{l^T(r)\Gamma_s^{-1}l(r) + l^T(r)\Gamma_N^{-1}l(r)}
\]

source location

small \(\leftarrow l^T(r)\Gamma_N l(r) \rightarrow \) large
148-channel sensor array
Minimum-norm reconstruction

Minimum-variance spatial filter reconstruction
Two major problems arise when applying minimum-variance beamformer to neuromagnetic source reconstruction.

- **Output SNR degradation.**
- **Vector source detection.**
Minimum-variance beamformer is very sensitive to errors in forward modeling or errors in sample covariance matrix. Because such errors are almost inevitable in neuromagnetic measurements, minimum-variance beamformer generally provides noisy spatio-temporal reconstruction results. Introducing eigenspace projection
Add very small amount of noise to obtain the simulated MEG recordings.
Spatio-temporal reconstruction

220ms

300ms

268ms
Recall some definitions:

\[
R = U \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_M
\end{bmatrix} U^T = U \begin{bmatrix}
\Lambda_S & 0 \\
0 & \Lambda_N
\end{bmatrix} U^T, \text{ and } U = [e_1, \ldots, e_p | e_{p+1} \ldots, e_M]
\]

Also, \(\Gamma_S^{-1} = E_S \Lambda_S^{-1} E_S^T, \Gamma_N^{-1} = E_N \Lambda_N^{-1} E_N^T \)

Output SNR\(^\infty \) \[
\frac{[l^T(r)\Gamma_S^{-1}l(r)]^2}{[l^T(r)\Gamma_S^{-1}l(r)]^2 + \varepsilon^T \Gamma_N^{-2} \varepsilon^*}
\]

Overall error in estimating \(l(r) \)

Even when \(\varepsilon \) is small, \(\varepsilon^T \Gamma_N^{-2} \varepsilon \) may not be small,
because \(\varepsilon^T \Gamma_N^{-2} \varepsilon \approx \|\varepsilon\|^2 / \lambda_{p+j}^2 \) \(\leftarrow \) noise level eigenvalue
Eigenspace projection

The error term $\varepsilon^T \Gamma_N^{-2} \varepsilon$ arises from the noise subspace component of $\mathbf{w}(r)$.

Extension to eigenspace projection beamformer

$$\mathbf{w}_\mu = \mathbf{E}_S \mathbf{E}_S^T \mathbf{w}_\mu, \text{ where } \mu = x, y \text{ or } z$$

Output SNR (non-eigenspace projected)

$$\text{Output SNR} \propto \frac{[\Gamma(r) \Gamma_{-1}(r)]^2}{[\Gamma(r) \Gamma_{-1}(r) + \varepsilon^T \Gamma_N^{-2} \varepsilon]^{\frac{3}{2}}}$$

Output SNR (eigenspace projected)

$$\text{Output SNR} \propto \frac{[\Gamma(r) \Gamma_{-1}(r)]^2}{[\Gamma(r) \Gamma_{-1}(r)]}$$
Spatio-temporal reconstruction with eigen-space projection

The diagrams show spatio-temporal patterns at different times:
- 220ms
- 300ms
- 268ms
Application to 37-channel auditory-somatosensory recording eigenspace-projection results
Application to 37-channel auditory-somatosensory recording
Non-eigenspace projected results
Summary

• This talk reviews the application of adaptive beamformer to reconstruction of brain activities.

• Eigenspace projection is shown to overcome the SNR degradation caused by errors in forward modeling; such errors are unavoidable in MEG measurements.
The implicit assumptions for the adaptive beamformer are that sources are uncorrelated and that the signal is low rank.

The influences caused when these assumptions are invalidated have been discussed elsewhere. The PDF versions of the presentations regarding those matters are available in

http://www.tmit.ac.jp/~sekihara/

The PDF version of this power-point presentation as well as PDFs of the recent publications are also available.
Collaborators

University of California, San Francisco
Biomagnetic Imaging Laboratory
Dr. Srikantan S. Nagarajan

University of Maryland
Linguistics and Cognitive Neuroscience Laboratory
Dr. David Poeppel

Massachusetts Institute of Technology,
Department of Linguistics and Philosophy
Dr. Alec Marantz

Kanazawa Institute of Technology
Human Science Laboratory
Dr. Isao Hashimoto