MEG adaptive beamformer
source reconstruction technique
in the presence of correlated sources

Kensuke Sekihara
Tokyo Metropolitan Institute of Technology
This talk presents results of the investigation that evaluates the performance of the MEG adaptive beamformer technique in the presence of correlated sources.
Data vector: \(\mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_M(t) \end{bmatrix} \)

- \(b_j(t) \): the \(j \)th sensor recording at \(t \)

Data covariance matrix: \(\mathbf{D} = \langle \mathbf{b}(t)\mathbf{b}^T(t) \rangle \)

\(\langle \cdot \rangle \) represents time average
Source moment

- magnitude at \(\mathbf{r} = [x, y, z] \)
 and at \(t \): \(s(\mathbf{r}, t) \)

- orientation:
 \[\eta(\mathbf{r}, t) = [\eta_x(\mathbf{r}, t), \eta_y(\mathbf{r}, t), \eta_z(\mathbf{r}, t)] \]

- source moment vector:
 \[
 \mathbf{s}(\mathbf{r}, t) = s(\mathbf{r}, t) \begin{bmatrix} \eta_x(\mathbf{r}, t) \\ \eta_y(\mathbf{r}, t) \\ \eta_z(\mathbf{r}, t) \end{bmatrix} = \begin{bmatrix} s_x(\mathbf{r}, t) \\ s_y(\mathbf{r}, t) \\ s_z(\mathbf{r}, t) \end{bmatrix}
 \]

\[
\eta_x = \sin \theta \cos \phi \\
\eta_y = \sin \theta \sin \phi \\
\eta_z = \cos \theta
\]
Lead field vector for the j th sensor

$$I_j(r) = [l_j^x(r), l_j^y(r), l_j^z(r)]$$

Lead field matrix for the whole sensor array

$$L(r) = \begin{bmatrix} I_1(r) \\ I_2(r) \\ \vdots \\ I_M(r) \end{bmatrix} = \begin{bmatrix} l_1^x(r) & l_1^y(r) & l_1^z(r) \\ l_2^x(r) & l_2^y(r) & l_2^z(r) \\ \vdots & \vdots & \vdots \\ l_M^x(r) & l_M^y(r) & l_M^z(r) \end{bmatrix} = \begin{bmatrix} l_x(r), l_y(r), l_z(r) \end{bmatrix}$$
Basic relationship

\[b_j(t) = \int l_j(r)s(r,t)dr \]

or

\[b(t) = \int L(r)s(r,t)dr \]

Problem of source localization:

Estimate \(s(r,t) \) from the measurement \(b(t) \)
What is adaptive beamformer?
Spatial filter

\[\hat{s}(r, t) = w^T(r)b(t) = [w_1(r), \ldots, w_M(r)]\begin{bmatrix} b_1(t) \\ \vdots \\ b_M(t) \end{bmatrix} = \sum_{m=1}^{M} w_m(r)b_m(t) \]

\[\uparrow \text{ estimate of } s(r, t) \quad \uparrow \text{ weight vector} \]
Non-adaptive weight

\(w(r) \) is data independent

Adaptive weight

\(w(r) \) is data dependent
Non-adaptive weight

minimum-norm estimate (Hamalainen et al.)

The weight $\mathbf{w}(\mathbf{r})$ is obtained by

$$\mathbf{w}^T(\mathbf{r}) = \mathbf{L}^T(\mathbf{r})\mathbf{G}^{-1}, \text{ where } G_{i,j} = \int l_i(\mathbf{r})l_j^T(\mathbf{r})d\mathbf{r}$$

Inverse solution: $\hat{\mathbf{s}}(\mathbf{r}) = \mathbf{L}^T(\mathbf{r})\mathbf{G}^{-1}\mathbf{b}$

This is erroneous
Property of G matrix

$$G_{i,j} = \int l_i(r) l_j(r) dr$$

Biomagnetic instruments

Overlaps of sensor lead fields is large

G is poorly conditioned

X-ray computed tomography

$G \approx$ unit matrix
G is poorly conditioned

• Apply regularization when calculating G

 use $(G + \gamma I)^{-1}$, instead of G^{-1}

Bayesian methods

• Do not use G

 Adaptive beamforming technique
Adaptive beamformer

minimum-variance beamformer

subject to \(\mathbf{w}^T \mathbf{l}(\mathbf{r}, \eta) = \mathbf{L}(\mathbf{r}) \eta = 1 \)

\[
\min_{\mathbf{w}} \mathbf{w}^T \mathbf{D} \mathbf{w} \text{ subject to } \mathbf{w}^T \mathbf{l}(\mathbf{r}, \eta) = \mathbf{L}(\mathbf{r}) \eta = 1
\]

\[
\mathbf{w}^T(\mathbf{r}) = \frac{\mathbf{l}^T(\mathbf{r}) \mathbf{D}^{-1}}{\mathbf{l}^T(\mathbf{r}) \mathbf{D}^{-1} \mathbf{l}(\mathbf{r})}
\]

and

\[
\hat{\mathbf{s}}(\mathbf{r}, t) = \mathbf{w}^T(\mathbf{r}) \mathbf{b}(t) = \frac{\mathbf{l}^T(\mathbf{r}) \mathbf{D}^{-1} \mathbf{b}(t)}{\mathbf{l}^T(\mathbf{r}) \mathbf{D}^{-1} \mathbf{l}(\mathbf{r})}
\]

use \(\mathbf{l}(\mathbf{r}) \) instead of \(\mathbf{l}(\mathbf{r}, \eta) \) for simplicity
Adaptive beamformer

• Spatial resolution can exceed the limit imposed by the sensor-array configuration.

Possibility of providing high spatial resolution

• Strong temporal correlation among source activities degrades the quality of final reconstruction results.
Reconstruction from left-hemisphere data only
Reconstruction from right-hemisphere data only
Right auditory cortex activation

Left auditory cortex activation

correlation coefficient: 0.97
Reconstruction from all-channel data
How does the adaptive beamformer technique perform when sources are moderately correlated?
Influence of the source correlation

Adaptive beamformer cannot perfectly block the signal from correlated sources.

↓

Signal cancellation: intensity of reconstructed source moment decreases

Erroneous time course estimate: reconstructed source time course becomes a mixture of time courses of correlated source.

Spatial blur: spatial resolution is degraded due to the source correlation.
Basic relationship:

\[\mathbf{w}^T (\mathbf{r}_p) \mathbf{l}(\mathbf{r}_q) = \frac{[\mathbf{R}_s^{-1}]_{pq}}{[\mathbf{R}_s^{-1}]_{pp}} \]

Assume that \(Q \) sources are correlated,

\[\bar{s}(\mathbf{r}_p, t) = s(\mathbf{r}_p, t) + \sum_{q=1}^{Q} \frac{[\mathbf{R}_s^{-1}]_{pq}}{[\mathbf{R}_s^{-1}]_{pp}} s(\mathbf{r}_q, t) \]

\(\mathbf{R}_s \) : source covariance matrix, \([\mathbf{R}_s^{-1}]_{pq}\) : the \((p,q)\) element of \(\mathbf{R}_s^{-1} \)
When two sources are correlated

$$R_s^{-1} = \frac{1}{\alpha_1^2 \alpha_2^2 (1-\mu^2)} \begin{bmatrix} \alpha_2^2 & -\mu \alpha_1 \alpha_2 \\ -\mu \alpha_1 \alpha_2 & \alpha_1^2 \end{bmatrix}$$

submatrix relating to the correlated two sources

Then

$$\tilde{s}(r_1,t) = s(r_1,t) - \left(\frac{\alpha_1 \mu}{\alpha_2} \right) s(r_2,t)$$

$$\tilde{s}(r_2,t) = -\left(\frac{\alpha_2 \mu}{\alpha_1} \right) s(r_1,t) + s(r_2,t)$$

\(\alpha_j^2\): the jth source power defined by \(\alpha_j^2 = \langle s(r_j,t)^2 \rangle\),

\(\mu\): correlation between the two sources defined by

$$\mu = \frac{\langle s(r_1,t) s(r_2,t) \rangle}{\sqrt{\langle s(r_1,t)^2 \rangle \langle s(r_2,t)^2 \rangle}}$$
Interesting results

\[
\tilde{\mu} = \frac{\left\langle \tilde{s}(\mathbf{r}_1, t)\tilde{s}(\mathbf{r}_2, t) \right\rangle}{\sqrt{\left\langle \tilde{s}(\mathbf{r}_1, t)^2 \right\rangle \left\langle \tilde{s}(\mathbf{r}_2, t)^2 \right\rangle}}
\]

\[\downarrow\]

\[
\tilde{\mu} = \frac{|\alpha_1 \alpha_2 (\mu^3 - \mu)|}{\sqrt{\alpha_1^2 (1 - \mu^2) \alpha_2^2 (1 - \mu^2)}} = |\mu|
\]

Magnitude correlation coefficient calculated using the beamformer outputs is equal to the true magnitude correlation coefficient.
Signal cancellation (when two sources are correlated)

\[
\tilde{s}(\mathbf{r}_1, t) = s(\mathbf{r}_1, t) - \left(\frac{\alpha_1 \mu}{\alpha_2}\right) s(\mathbf{r}_2, t)
\]

\[
\tilde{s}(\mathbf{r}_2, t) = -\left(\frac{\alpha_2 \mu}{\alpha_1}\right) s(\mathbf{r}_1, t) + s(\mathbf{r}_2, t)
\]

\[
\langle \tilde{s}(\mathbf{r}_1, t)^2 \rangle = \alpha_1^2 (1 - \mu^2) = (1 - \mu^2) \langle s(\mathbf{r}_1, t)^2 \rangle
\]

\[
\langle \tilde{s}(\mathbf{r}_2, t)^2 \rangle = \alpha_2^2 (1 - \mu^2) = (1 - \mu^2) \langle s(\mathbf{r}_2, t)^2 \rangle
\]

Source intensity decreases by a factor of \((1 - \mu^2)\)
Intensity vs. correlation

Theoretical curve: \(\propto \sqrt{1-\mu^2} \)
37-channel sensor array

source correlation: zero

source correlation: 0.8

SNR=8
Reconstruction results

$\mu = 0$ $\mu = 0.5$ $\mu = 0.6$

$\mu = 0.7$ $\mu = 0.8$ $\mu = 0.95$
\[
\tilde{s}(\mathbf{r}_1, t) = s(\mathbf{r}_1, t) - \left(\frac{\alpha_1 \mu}{\alpha_2} \right) s(\mathbf{r}_2, t)
\]

\[
\tilde{s}(\mathbf{r}_2, t) = -\left(\frac{\alpha_2 \mu}{\alpha_1} \right) s(\mathbf{r}_1, t) + s(\mathbf{r}_2, t)
\]
Time course retrieval

Two-source correlation cases

\[
\begin{bmatrix}
\hat{s}(r_1, t) \\
\hat{s}(r_2, t)
\end{bmatrix} =
\begin{bmatrix}
1 & -(\alpha_1 / \alpha_2) \mu \\
-(\alpha_2 / \alpha_1) \mu & 1
\end{bmatrix}
\begin{bmatrix}
s(r_1, t) \\
s(r_2, t)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\hat{s}(r_1, t) \\
\hat{s}(r_2, t)
\end{bmatrix} =
\begin{bmatrix}
1 & -(\alpha_1 / \alpha_2) \mu \\
-(\alpha_2 / \alpha_1) \mu & 1
\end{bmatrix}^{-1}
\begin{bmatrix}
\hat{s}(r_1, t) \\
\hat{s}(r_2, t)
\end{bmatrix}
\]

\[
\hat{\mu} = \tilde{\mu}
\]
\[
\hat{\alpha}_j^2 = \alpha_j^2 / (1 - \tilde{\mu}^2)
\]
Time course retrieval experiments for two correlated sources

original

beamformer output

retrieved
Influence of the source correlation on the spatial resolution
37-channel sensor array

\(\mu = 0.1 \)

\(\mu = 0.5 \)

\(\mu = 0.8 \)
Assume two sources with identical power

\(\mathbf{r}_1, \mathbf{r}_2 : \) source locations, \(\eta_1, \eta_2 : \) source orientations

\(\alpha^2 : \) power of each source, \(\mu : \) correlation coefficient

Define \(\mathbf{l}_1 = \mathbf{L}(\mathbf{r}_1)\eta_1 \) and \(\mathbf{l}_2 = \mathbf{L}(\mathbf{r}_2)\eta_2 \)

Then,
\[
\mathbf{D} = \sigma^2 \mathbf{I} + \alpha^2 \begin{bmatrix} \mathbf{l}_1 & \mathbf{l}_2 \end{bmatrix} \begin{bmatrix} 1 & \mu \\ \mu & 1 \end{bmatrix} \begin{bmatrix} \mathbf{l}_1 & \mathbf{l}_2 \end{bmatrix}^T
\]

\[
= \sigma^2 (\mathbf{I} + \frac{\alpha^2}{\sigma^2} \mathbf{l}_1\mathbf{l}_1^T + \mathbf{l}_2\mathbf{l}_2^T + \mu (\mathbf{l}_1\mathbf{l}_2^T + \mathbf{l}_2\mathbf{l}_1^T))
\]

beamformer response at \(\mathbf{r} \)

\[
p(\mathbf{r}) = \sum_{j=x,y,z} w_j^T(\mathbf{r})\mathbf{D}w_j(\mathbf{r})
\]
Lorenzean curve fitting

Lorenzean curve

\[f(y) = \frac{1}{1 + [(y - y_j)/\Delta]^2} \]

\(\Delta \): FWHM of the curve
Summary

The performance degradation of the adaptive beamformer techniques in the presence of correlated sources was analyzed when two correlated sources exist:

• The performance is generally not significantly degraded in the presence of moderately correlated sources ($\mu < 0.7$).

• The time course estimate may be erroneous even for such moderate degree of source correlation.

• A method is developed for retrieving the original time courses, when the number of correlated sources are two or three and this number is known.