最適サーボシステムを用いた 平行リンクマニピュレータの目標値追従制御

首都大学東京 ヒューマンメカトロニクスシステムコース B4 村﨑 智文 (児島研究室)

1.はじめに

☆人間機械協調系

近年のロボット技術の発展により,人の運動・作業を補助ま たは拡張するようなパワーアシストシステムが注目されている. ☆人間機械協調システムの役割[1]

- ・機械システムが人と直接かかわることで人間を支援する.
- ・人と人とが協調して仕事ができるよう,人と人との間で機 械システムが働く.

☆シリアルリンクとパラレルリンクの特性

シリアルリンク 直列なリンクで連結される

パラレルリンク 複数のリンクを並列に連結

	シリアルリンク	パラレルリンク	
精度	低い	高い	
剛性	低い	高い	
最大力	小さい	大きい	
作業領域	広い	狭い	

平行リンクマニピュレータ

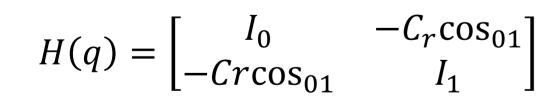
→パラレルリンクの一種であり,高い剛性と位置決め精度を持 ち,パワーアシストシステムへの展開が期待されているが,姿 勢によって大きくダイナミクスが変化してしまう.

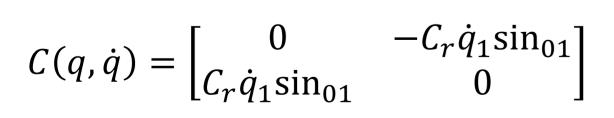
目的

平行リンクマニピュレータを用いて,通常のサーボ系と,大域 的に性能を保証するために,パラメータ変動の範囲を考慮した ロバスト H_2 制御の効果を確認する.

2.平行リンクマニピュレータ

制御対象であるモデル(平行リンクマニピュレータ)を考える. ☆手先位置


$$p(t) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} l_{00}\cos q_0 + l_{11}\cos q_1 \\ l_{00}\sin q_0 + l_{11}\sin q_1 \end{bmatrix}$$


☆ヤコビ行列

$$J_s(q) = \begin{bmatrix} -l_{00}\cos q_0 & -l_{11}\cos q_1 \\ l_{00}\cos q_0 & l_{11}\cos q_1 \end{bmatrix}$$

☆運動方程式

$$H(q)\ddot{q} + C(q, \dot{q})\dot{q} + r(\dot{q}) = \tau$$

$$r(\dot{q}) = \begin{bmatrix} B_0 \dot{q}_0 + E_0 \text{sgn}(\dot{q}_0) \\ B_1 \dot{q}_1 + E_1 \text{sgn}(\dot{q}_1) \end{bmatrix}$$

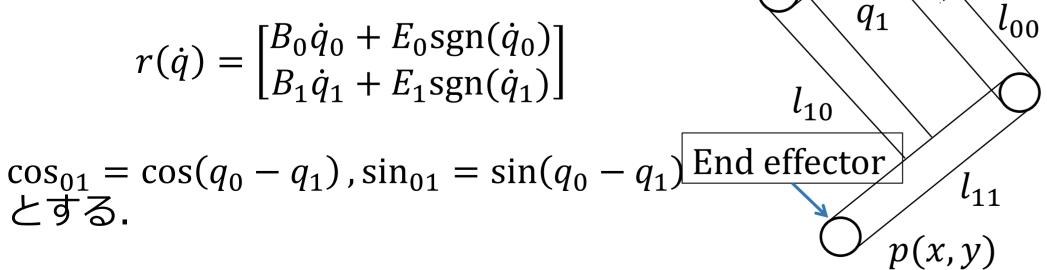


Table 1 各パラメータの推定値

Fig.2 制御対象

Fig. 1 平行リンクマニピュレータ

Actuator

				7.0 1631517.3537			
$I_0[\text{kgm}^2]$	$I_1[\text{kgm}^2]$	$C_r[\text{kgm}^2]$	$B_0[Nms]$	$B_1[Nms]$	$E_0[Nm]$	$E_1[Nm]$	
0.22	0.14	-0.18	2.94	1.63	1.68	1.46	

3.目標值追従実験

☆実験条件

以下の評価関数 / を最小にするような入力を決定する.

$$J(x_0) = \int_0^\infty \left(\bar{x}(t)^{\mathrm{T}} Q \bar{x}(t) + \bar{u}(t)^{\mathrm{T}} R \bar{u}(t) \right) dt, \ Q > 0, R > 0$$

Case 1 初期値: $(q_0, q_1) = \left(-\frac{\pi}{2}, -\pi\right)$ 目標値: $(q_0, q_1) = (0, -\frac{\pi}{2})$

Case 2 初期値: $(q_0, q_1) = \left(-\frac{\pi}{2}, -\pi\right)$

目標値: $(q_0, q_1) = (0, -\frac{2\pi}{\epsilon})$

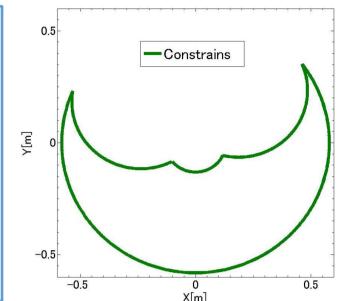
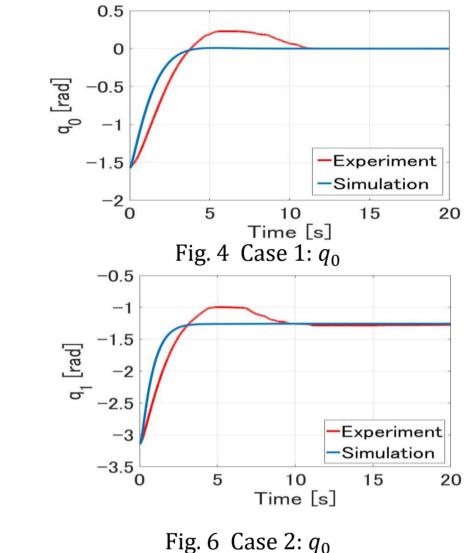



Fig. 3 動作範囲

☆実験結果

●通常のサーボ系

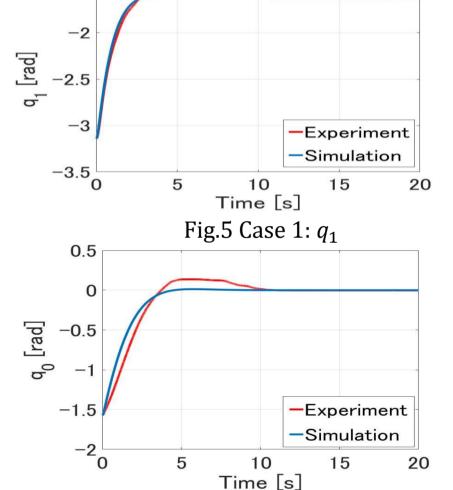
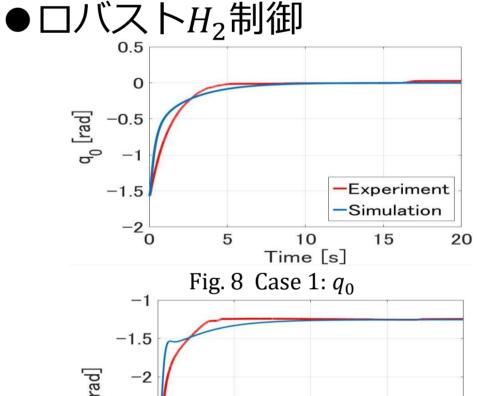



Fig.7 Case 2: q_1

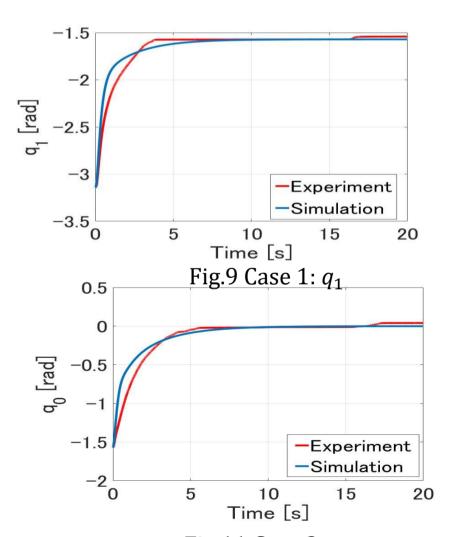


Fig. 10 Case 2: q_0 Fig.11 Case 2: *q*₁ 通常のサーボ系では目標値に収束しているが立ち上がりが 遅く,オーバーシュートしている. H2制御の実験ではほぼ同 じ軌道で目標値へ向かっているが,通常のサーボ系と比べ ると目標値とずれて収束していることが分かる.

4.まとめ

☆まとめ

平行リンクマニピュレータに対して,最適サーボシステムと ロバスト H_2 制御を適用させた.

ロバストにH2制御より決定したゲインは,目標値を変化させ てもその値に適当な過渡特性を維持しながら追従する傾向が確 認される.

今後は新しい摩擦補償の導入や重み行列の検討を行う.

参考文献

[1]佐藤知正: 人間機械協調システム,計測と制御,Vol.35, No.4, pp262-267 (1996)