需給変動の予見情報を利用した負荷周波数制御

首都大学東京 知能機械システムコース 池川聖悟 (児島研究室) **B4**

1. はじめに

安全なエネルギー供給,温室効果ガスの排出削減のために,再生 可能エネルギーの大量導入が進められている[1](Fig.1)

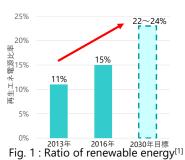


Fig. 2 : Solar power generator

- 火力発電の割合が減少し系統慣性が減少するため, 周波数変 動が生じやすくなる.
- 発電量予測を制御に利用する場合, 予測の誤差が制御性能に 影響を与える.

研究目的

再生可能エネルギーが大量導入されて不安定化した電力系統に 対して,制御器を組み込むことで周波数変動を抑制する.

- 再生可能エネルギーの発電量予測の予測誤差を考慮したH2予 <mark>見制御を行い,負荷周波数制御の制御性能を改善する.</mark>
- 系統慣性の減少に対する予見制御の有効性を評価する.

2. 予見負荷周波数制御モデル

負荷周波数制御(Load Frequency Control: LFC)[2]

- 電力系統の周波数変動を抑制するための制御、様々な周期を もつ需要変動の内3~20分程度の周期を持つ変動を賄う.
- 電力需要量と供給量を一致させることで,周波数変動を抑制 する.

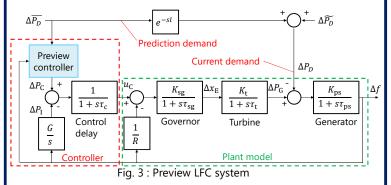


Table 1 · Parameters

Table 1:1 didneters								
Sign	Expression and Unit							
ΔP_D	Load demand [p.u.]	u_C	Control input [Hz]					
w_u	Prediction error [p.u.]	Δx_E	Valve displacement [p.u.]					
ΔP_C	Controller input [p.u.]	ΔP_G	Generator increment [p.u.]					
ΔP_I	Integrator input [p.u.]	Δf	Frequency variation [Hz]					

予見時間 l 秒遅れた外乱の予測値 $\Delta \overline{P_D}$ と予見誤差 $\Delta \widetilde{P_D}$ の和が 需要変動 ΔP_D としてパワーシステムに印加.

外乱: $\Delta P_D = \Delta \overline{P_D} + \Delta \widetilde{P_D}$

3. 予測誤差を考慮したH²予見制御

予測誤差の主要周波数帯域を考慮した制御器設計を行う[3].

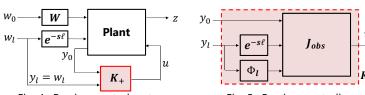
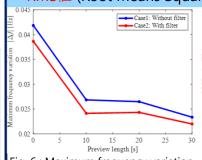


Fig. 4: Preview control system


- ▶外乱の予測値w₁を先行してコントローラが利用.予見時間lだ け遅れた予測値 w_1 と予見誤差 w_0 がプラントに印加(Fig.4).
- 測定出力 y_0 と予見情報 w_l から最適な制御入力を決定(Fig.5).
- 予測誤差woの入力端に周波数重みを加えて制御器を設計.

4. シミュレーションと結果

H²予見制御とH²制御で制御性能が等しくなる慣性定数 を求め, 慣性の減少した系統に対する予見制御の有効性 を評価する.

制御性能の評価指標

- ✓ 伝達関数のH²ノルム
- RMS値 (Root Means Square Value)

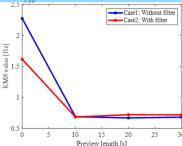


Fig. 6: Maximum frequency variation

Fig. 7: RMS value

Table 2: Calculation results of inertia constant

		RMS				H ² norm	
		Without filter	With filter			Without filter	With filter
Pre.H ²	Inertia Const.	0.200	0.200	Pre.H ²	Inertia Const.	0.200	0.200
	(RMS)	(6.817)	(7.182)	rie.H	(Optimal cost)	(6.904)	(4.683)
H^2	Inertia Const.	3.319	3.026	H^2	Inertia Const.	0.209	0.219
Ratio		16.594	15.132		Ratio	1.045	1.096

- 予見制御により制御性能の改善された(Fig.6, Fig.7).
- 予測誤差を考慮した制御機設計により, 周波数変動の 最大値の抑制効果を確認した(Fig.6).
- ▶ 慣性の減少した系統に対する予見制御の有効性を確 認した(Table2).

5. まとめと今後の展望

- 予測誤差を考慮した制御機設計を行い, 周波数変動の最大値 の抑制効果を確認した.
- 系統慣性の減少に対して予見制御が有効であることをシミュ レーションに基づき示した.
- ▶ 連係線の非線形要素や慣性定数の変動を考慮したモデルに対 して, ゲインスケジュールド制御を応用する.

参考文献

- [1] 経済産業省資源エネルギー庁, "エネルギー基本計画", https://www.enecho.meti.go.jp/category/others/basic_plan/pdf/180703.pdf, 2018
- [2] S.Sivanagaraju, G.Sreenivasan, "Power System Operation and Control", Pearson Education India, 2009
- [3] K.Hashikura, R.Hotchi, A.Kojima, T.Masuta, "On implementations of H2 preview output feedback law with application to LFC with load demand prediction", 201